Abstract

The European Union legislation 2006/40/EC results in a phase-out of the presently used tetrafluoroethane refrigerant R134a from automotive heating ventilation and air conditioning systems. This necessitates the adoption of alternative refrigerants, and 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf) is currently regarded as the most promising alternative refrigerant. However, the lack of experimental data hampers independent studies on its performance in technical applications. We have developed a force field for HFO-1234yf that enables reliable predictions of its thermophysical properties via molecular simulation. The simulation results complement experimental data and provide a molecular-level perspective of the fluid behavior. In this letter we present the force field and its validation using Gibbs ensemble simulations on its vapor liquid equilibria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.