Abstract

Adenosine receptors (ARs) are members of the superfamily of G protein-coupled receptors. The homology models of adenosine A1 and A2A receptors were constructed. The high-resolution X-ray structure of bovine rhodopsin and crystal structure of beta2-adrenergic receptor were used as templates. The binding sites of the A1 and A2A ARs were constructed by using data obtained from mutagenesis experiments as well as docking simulations of the respective AR antagonsists DPCPX and XAC. To compare rhodopsin- and beta2-adrenergic-based models, the binding mode of A1 (KW-3902, LUF-5437) and A2A (KW-6002, ZM-241385) ARs antagonists were also examined. The differences in the binding ability of both models were noted during the study. The beta2-adrenergic-based A2A AR model was much more capable to stabilize the ligand in the binding site cavity than the corresponding rhodopsin-based A2A AR model, however, such differences were not so clear in case of A1 AR models. It was suggested that for the A1 AR it is possible to use the crystal structure of rhodopsin as a template as well as beta2-adrenergic receptor, but for A2A AR, with the now available beta2-adrenergic receptor X-ray structure, docking studies should be avoided on the rhodopsin-based model. However, taking into account that the beta2AR shares about 31% of the residues with the AR in comparison to 21% in case of bRho, we suggest using beta2-adrenergic-based models for the A1 and A2A ARs for further in silico ligand screening also because of their generally better ability to stabilize ligands inside the binding pocket.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.