Abstract

In the present work, we report on a one-pot method for the assembly of noble metal nanoparticles with tunable optical properties, assembly length and interparticle spacing. The synthetic colloidal route is based on the covalent binding among OH-terminated silver nanoparticles by means of dicarboxylic acids with a defined molecular length. As a result, the initially symmetric plasmon band of silver nanoparticles splits into two plasmonic modes when nanoparticles are assembled due to the strong near-field plasmon coupling. We noticed a very good correlation between the plasmon wavelength shift and the interparticle spacing that is represented by the universal scaling law of the surface plasmon resonance in metal nanoparticle dimers. A relationship between the plasmon coupling and the assembly size (represented by the number of nanoparticles) for two different interparticle distances has been experimentally found. Such a correlation has revealed the additional effect of the electronic polarizability of the linker on the propagation of the plasmon coupling between NPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.