Abstract

We have used the human promonocyte-like U937 cell line as a model to study the regulation of interstitial collagenase and tissue inhibitor of metalloproteinases (TIMP) during mononuclear phagocyte development. Our results show that differentiation of U937 cells with exposure to 12-O-tetradecanoylphorbol 13-acetate (TPA) induces a temporally delayed (16-24 h) but marked increase in the biosynthesis and secretion of interstitial collagenase and TIMP. Similarly, steady-state mRNA levels for both proteins rose dramatically during the period of exposure, but again after considerable time delay (12-16 h). For interstitial collagenase, induction was transcriptionally regulated as demonstrated by nuclear run-on experiments, and required the synthesis of proteins as indicated by cycloheximide treatment. However, transcriptional activation of collagenase was never observed prior to 10-12 h; since c-fos is rapidly induced in U937 cells and largely disappears by 2 h (Mitchell et al., 1985), our data strongly suggest that collagenase induction in this system cannot be explained simply or entirely by an AP-1-dependent mechanism. Although TIMP steady-state mRNA levels also increased substantially with cellular differentiation, no transcription was detected by run-on experiments. However, TPA exposure markedly prolonged the half-life of TIMP mRNA from 4 h to > 20 h. While cycloheximide treatment completely blocked TPA-mediated induction of collagenase mRNA, it only marginally interfered with simultaneously induced TIMP mRNA levels. Our results demonstrate that differentiation of U937 monocytic cells is accompanied by markedly enhanced production of both interstitial collagenase and TIMP. However, there are multiple, and perhaps differing, molecular mechanisms regulating these responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.