Abstract
Mitochondria provide cells with most of the energy in the form of adenosine triphosphate (ATP). Mitochondria are complex organelles encoded both by nuclear and mtDNA. Only a few mitochondrial components are encoded by mtDNA, most of the mt‐proteins are nuclear DNA encoded. Remarkably, the majority of the known mutations leading to a mitochondrial disease have been identified in mtDNA rather than in nuclear DNA. In general, the idea is that these pathogenic mutations in mtDNA affect energy supply leading to a disease state. Remarkably, different mtDNA mutations can associate with distinct disease states, a situation that is difficult to reconcile with the idea that a reduced ATP production is the sole pathogenic factor. This review deals with emerging insight into the mechanism by which the A3243G mutation in the mitochondrial tRNA (Leu, UUR) gene associates with diabetes as major clinical expression. A decrease in glucose‐induced insulin secretion by pancreatic beta‐cells and a premature aging of these cells seem to be the main process by which this mutation causes diabetes. The underlying mechanisms and variability in clinical presentation are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.