Abstract
Regulation of gene expression is one mechanism by which drugs of abuse can induce relatively long-lasting changes in the brain to cause a state of addiction. Here, we focus on two transcription factors, CREB (cAMP response element binding protein) and ΔFosB, which contribute to drug-induced changes in gene expression. Both are activated in the nucleus accumbens, a major brain reward region, but mediate different aspects of the addicted state. CREB mediates a form of tolerance and dependence, which dampens an individual’s sensitivity to subsequent drug exposure and contributes to a negative emotional state during early phases of withdrawal. In contrast, ΔFosB mediates a state of relatively prolonged sensitization to drug exposure and may contribute to the increased drive and motivation for drug, which is a core symptom of addictive disorders. A major goal of current research is to identify the many target genes through which CREB and ΔFosB mediate these behavioral states. In addition, future work needs to understand how CREB and ΔFosB, acting in concert with numerous other drug-induced molecular changes in nucleus accumbens and many other brain regions, interact with one another to produce the complex behavioral phenotype that defines addiction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.