Abstract

The study aimed to utilize network pharmacology combined withcell experiments to research the mechanism of action of Saikosaponin-d in the treatment of gastric cancer. Drug target genes were obtained from the PubChem database and the Swiss Target Prediction database. Additionally, target genes for gastric cancer were obtained from the GEO database and the Gene Cards database. The core targets were then identified and further analyzed through gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and GESA enrichment. The clinical relevance of the core targets was assessed using the GEPIA and HPA databases. Molecular docking of drug monomers and core target proteins was performed using Auto Duck Tools and Pymol software. Finally, in vitro cellular experiments including cell viability, apoptosis, cell scratch, transwell invasion, transwell migration, qRT-PCR, and Western blot were conducted to verify these findings of network pharmacology. The network pharmacology analysis predicted that the drug monomers interacted with 54 disease targets. Based on clinical relevance analysis, six core targets were selected: VEGFA, IL2, CASP3, BCL2L1, MMP2, and MMP1. Molecular docking results showed binding activity between the Saikosaponin-d monomer and these core targets. Saikosaponin-d could inhibit gastric cancer cell proliferation, induce apoptosis, and inhibit cell migration and invasion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.