Abstract
Thioesterases are enzymes that hydrolyze thioester bonds between a carbonyl group and a sulfur atom. They catalyze key steps in fatty acid biosynthesis and metabolism, as well as polyketide biosynthesis. The reaction molecular mechanism of most hotdog-fold acyl-CoA thioesterases remains unknown, but several hypotheses have been put forward in structural and biochemical investigations. The reaction of a human thioesterase (hTHEM2), representing a thioesterase family with a hotdog fold where a coenzyme A moiety is cleaved, was simulated by quantum mechanics/molecular mechanics metadynamics techniques to elucidate atomic and electronic details of its mechanism, its transition-state conformation, and the free energy landscape of the process. A single-displacement acid-base-like mechanism, in which a nucleophilic water molecule is activated by an aspartate residue acting as a base, was found, confirming previous experimental proposals. The results provide unambiguous evidence of the formation of a tetrahedral-like transition state. They also explain the roles of other conserved active-site residues during the reaction, especially that of a nearby histidine/serine pair that protonates the thioester sulfur atom, the participation of which could not be elucidated from mutation analyses alone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.