Abstract

Understanding protein-solute interactions is one of the sizable challenges of protein chemistry; therefore, numerous experimental studies have attempted to explain the mechanism by which proteins unfold in aqueous urea solutions. On the basis of kinetic evidence at low urea concentrations, (1)H NMR spectroscopic analysis, and molecular orbital calculations, we propose a mechanistic model for the denaturation of RNase A in urea. Our results support a direct interaction between urea and protonated histidine as the initial step for protein inactivation followed by hydrogen bond formation with polar residues, and the breaking of hydrophobic collapse as the final steps for protein denaturation. With the proposed model, we can rationalize apparently conflicting results in the literature about the mechanism of protein denaturation with urea.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.