Abstract

Molecular mechanics calculations were used to probe the conformational properties of a number of substituted phenanthrolines and their η3-allylpalladium complexes. Special attention was focused on phenanthrolines bearing chiral, terpene-derived, alkyl and alkenyl groups at C(2). Based upon these calculations, predictions could then be made regarding the suitability of the several ligands for use in asymmetric palladium-catalyzed substitution reactions of allylic acetates. Each of the substituted phenanthrolines was prepared by straightforward means. Use of these ligands in catalytic allylations gave results which were in good agreement with the calculation-based predictions. The highest levels of asymmetric induction were predicted and were obtained with a readily available 2-(2-bornyl)phenanthroline ligand 13. The results were compared with previously reported data obtained using other ligands. Overall, this work provides further indication of the potential utility of a combined calculational/experimenta...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.