Abstract

BackgroundThe prevention of malaria faces with the repeated emergence of Plasmodium falciparum resistance to drugs, often involving point mutations of the target gene. In the pregnant woman, currently the WHO recommendation is the administration of an intermittent preventive treatment (IPTp) with sulphadoxine-pyrimethamine. Sulphadoxine-pyrimethamine (SP) resistance has increased for several years in Africa, stressing the need for alternative molecules. In this context, the first randomized clinical trial comparing the efficacy of SP and mefloquine for IPTp has been conducted recently in Benin. Using samples from this trial, the current study evaluated and quantified the prevalence of mutations on the pfdhfr and pfdhps genes as well as the copy number of the pfmdr1 gene in parasites from P. falciparum-infected pregnant women before first and second IPTp administration, and at delivery.MethodsPCR-restriction fragment length polymorphism of polymorphic codons of the pfdhfr gene (51, 59, 108, and 164) was performed. The identification of mutations in three codons of the pfdhps gene (436, 437 and 540) was achieved by PCR and sequencing. Copy number quantification for pfmdr1 gene was performed using real-time PCR.ResultsResults show a high prevalence rate of mutant parasites in women taking IPTp with sulphadoxine-pyrimethamine or mefloquine. The prevalence of triple and quadruple mutants was high before first drug regimen administration (79/93, 85%), and remained similar until delivery. Infection with mutant parasites was not correlated with low birth weight nor placental infection. In all samples, the copy number of pfmdr1 gene was equal to one.ConclusionsThe clinical trial comparing SP and mefloquine efficacy during IPTp showed SP remained efficacious in preventing low birth weight. The present study shows a high prevalence of triple and quadruple mutations implicated in SP resistance. Although the pfdhfr/pfdhps triple and quadruple mutations were frequent, there was no evidence of correlation between these genotypes and the lack of efficacy of SP in the context of IPTp. Nevertheless, it is now obvious that SP will soon be compromised in whole Africa. Molecular markers have been recommended to monitor SP efficacy for IPTp, but given the current prevalence of mutant parasites their usefulness is questionable.

Highlights

  • The prevention of malaria faces with the repeated emergence of Plasmodium falciparum resistance to drugs, often involving point mutations of the target gene

  • Several molecular epidemiology studies showed that resistance to pyrimethamine is associated with the acquisition of mutations in the gene coding for dihydrofolate reductase (S108N, N51I, and C59R, and I164L) [4,5]

  • The S108N mutant exhibits a low level of resistance, the N51I/S108N or the C59R/S108N double mutants intermediate levels of resistance, and the N51I/ C59R/S108N triple mutant has a higher level of resistance to pyrimethamine

Read more

Summary

Introduction

The prevention of malaria faces with the repeated emergence of Plasmodium falciparum resistance to drugs, often involving point mutations of the target gene. Sulphadoxine-pyrimethamine (SP) resistance has increased for several years in Africa, stressing the need for alternative molecules In this context, the first randomized clinical trial comparing the efficacy of SP and mefloquine for IPTp has been conducted recently in Benin. Using samples from this trial, the current study evaluated and quantified the prevalence of mutations on the pfdhfr and pfdhps genes as well as the copy number of the pfmdr gene in parasites from P. falciparum-infected pregnant women before first and second IPTp administration, and at delivery. A study showed that the frequency of the triple pfdhfr (N51I, C59R, S108N) and double pfdhps (A437G, K540E) mutants increased by 37% - 63% and 200% -300% respectively when SP was used as the first line treatment of malaria attacks [8]. Another study showed that the frequency of pfdhfr mutations increased, especially after the change in treatment policy [9]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.