Abstract

Crocosphaera watsonii is a marine cyanobacterium that frequently inhabits low phosphate environments in oligotrophic oceans. While C.watsonii has the ability to fix atmospheric nitrogen, its growth may be limited by availability of phosphorus. Biomarkers that indicate cellular phosphorus status give insight into how P-limitation can affect the distribution of nitrogen-fixing cyanobacterial populations. However, adaptation to phosphorus stress is complex and one marker may not be sufficient to determine when an organism is P-limited. In this study, we characterized the transcription of key genes, activated during phosphorus stress in C.watsonii WH8501, to determine how transcription changed during the phosphorus stress response. Transcription of pstS, which encodes a high-affinity phosphate binding protein, was discovered to be quickly up-regulated in phosphorus-depleted cells as an immediate stress response; however, its transcription declined after a period of phosphorus starvation. In addition, diel regulation of pstS in C.watsonii WH8501 complicates the interpretation of this marker in field applications. Transcription of the gene coding for the arsenite efflux protein, arsB, was upregulated after pstS in phosphorus limited cells, but it remained upregulated at later stages of phosphorus limitation. These results demonstrate that a single molecular marker does not adequately represent the entire phosphorus stress response in C.watsonii WH8501. Using both markers, the variations in transcriptional response over a range of degrees of phosphorus limitation may be a better approach for defining cellular phosphorus status.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.