Abstract
In the era of high resolution submillimeter interferometers, it will soon be possible to observe the neutral circumstellar medium directly involved in gas giant planet (GGP) formation at physical scales previously unattainable. In order to explore possible signatures of gas giant planet formation via disk instabilities, we have combined a 3D, non-local thermodynamic equilibrium (LTE) radiative transfer code with a 3D, finite differences hydrodynamical code to model molecular emission lines from the vicinity of a 1.4 M_J self-gravitating proto-GGP. Here, we explore the properties of rotational transitions of the commonly observed dense gas tracer, HCO+. Our main results are the following: 1. Very high lying HCO+ transitions (e.g. HCO+ J=7-6) can trace dense planet forming clumps around circumstellar disks. Depending on the molecular abundance, the proto-GGP may be directly imageable by the Atacama Large Millimeter Array (ALMA). 2. HCO+ emission lines are heavily self-absorbed through the proto-GGP's dense molecular core. This signature is nearly ubiquitous, and only weakly dependent on assumed HCO+ abundances. The self-absorption features are most pronounced at higher angular resolutions. Dense clumps that are not self-gravitating only show minor self-absorption features. 3. Line temperatures are highest through the proto-GGP at all assumed abundances and inclination angles. Conversely, due to self-absorption in the line, the velocity-integrated intensity may not be. High angular resolution interferometers such as the Submillimeter Array (SMA) and ALMA may be able to differentiate between competing theories of gas giant planet formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.