Abstract
Two-dimensional redox-active covalent organic frameworks (COFs) are ideal materials for energy storage applications due to their high surface area, extended π conjugated structure, tunable pore size, and adjustable functionalities. Herein, we report the synthesis and supercapacitor application of two redox active COFs [TpPa-(OH)2 and TpBD-(OH)2] along with the role of their redox active functional groups for the enrichment of specific capacitance. Of these COFs, TpPa-(OH)2 exhibited the highest specific capacitance of 416 F g–1 at 0.5 A g–1 current density in three electrode configuration while the highest specific capacitance was 214 F g–1 at 0.2 A g–1 current density in two electrode configuration. Superior specific capacitance was due to emergence of excellent pseudocapacitance by virtue of precise molecular level control over redox functionalities present in the COF backbone. This COF also demonstrated 66% capacitance retention after 10 000 cycles along with 43% accessibility of the redox-active hydro...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.