Abstract

A molecular lens of the nonresonant dipole force formed by focusing a nanosecond IR laser pulse has been applied to benzene and CS2 molecular beams. Using the velocity map imaging technique for molecular ray tracing, characteristic molecular lens parameters including the focal length (f ), minimum beam width (W), and distance to the minimum beam width position (D) were determined. The laser intensity dependence of the observed lens parameters was in good agreement with theoretical predictions. W was independent of the laser peak intensity (I0), whereas f and D varied linearly with 1/I0. The differences in lens parameters between the molecular species were well correlated with the polarizability per mass values of the molecules. A high chromatographic resolution of Rs=0.84 was achieved between the images of benzene molecular beams undeflected and deflected by the lens. The possibilities for a new type of chromatography are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.