Abstract

AbstractMolecular ion S2+ and SiFn+ implantations into GaAs have been investigated to form very thin active layers. After implantation, the transient annealing (TA) and furnace annealing (FA) were used. The measurements of activation efficiency, mobility, carrier concentration profiles and PL spectra were carried out. The experiments show that after TA, the activation efficiency, mobility and carrier distribution are almost the same between samples implanted with S+ at an energy of 50KeV to a dose of 3×1013cm−2 and S+2 at 100KeV to 1.5×1013cm−2. It shows that the damage of S2-implanted samples can be removed by TA, and a very thin active layer can be formed by the implantation of S2+ at 50KeV. For SiFn-implanted samples, the activation efficiency and mobility. decrease with increase of the implanted ion mass. As+ co-implantation into SiF-implanted samples has been used to improve both activation efficiency and mobility. After comparison with the properties of the SiFt implantation, S2+implantation is more acceptable to form thin active layers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.