Abstract

The strong synergistic adsorption of mixed polymer/surfactant (P/S) systems at the oil/water interface shows promise for applications such as oil remediation and emulsion stabilization, especially with respect to the formation of tunable mesoscopic multilayers. There is some evidence that a combination of dodecyltrimethylammonium bromide (DTAB) and sodium poly(styrenesulfonate) (PSS) exhibits the adsorption of a secondary P/S layer, though the structure of this layer has long eluded researchers. The focus of this study is to determine whether the DTAB-assisted adsorption of PSS at the oil/water interface occurs as a single layer or with subsequent multilayers. The study presented uses vibrational sum-frequency spectroscopy and interfacial tensiometry to determine the degree of PSS adsorption and orientation of its charged groups relative to the interface at three representative concentrations of DTAB. At low and intermediate DTAB concentrations, a single mixed DTAB/PSS monolayer adsorbs at the oil/water interface. No PSS adsorbs above the system critical micelle concentration. The interfacial charge is found to be similar to that of P/S complexes solvated in the aqueous solution. The surface adsorbate and P/S complexes in the bulk both exhibit a charge inversion at around the same DTAB concentration. This study demonstrates the importance of techniques which can differentiate between coadsorbing species and calls into question current models of P/S adsorption at an oil/water interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.