Abstract

The description and understanding of absorption and distribution of potential new drug compounds in the organism is of paramount importance for the successful development of new drugs. However, the currently used physical chemical parameters such as oil-water distribution coefficients and ionization constants frequently fall short when it comes to a detailed description of the highly heterogeneous environments of both lipophilic and hydrophilic characters through which the drug compound passes. In this work, a new procedure based on electrochemistry at the interface between immiscible electrolyte solutions for addressing drug compound-ligand interactions in lipophilic environments as well as nonspecific ligand effects on distribution behavior has been developed. An attractive feature of the method is that it can simultaneously provide data for oil-water partition coefficients and ionization constants. The new procedure is demonstrated using five drug compounds with different physical chemical parameters and cholesterol as the oil-phase ligand. The use of ligand shift ion partition diagrams in the data presentation allows a quick visualization and comparison of a series of related drug compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.