Abstract

Cation-induced conformational changes of peptide as a guide to developing insights into human diseases-related proteins have received a lot of attention. The interactions between poly-l-glutamate (PGA) and different cations, including Na+, K+ and Mg2+, respectively, are studied in solvent at a concentration of 1 M, and the behaviours of peptide with different cations are investigated. For Na+, an oscillatory stabilising process to α-helix PGA is found, in accordance with the uniform free-energy landscape, whereas for K+, an extended α-helix structure is formed by the terminal turns, suggesting a weaker attraction to charged head groups. For Mg2+, the bridged charged side chains are responsible for the maximum probability of helix state. These distinct structural changes can be attributed to the different interactions between charged head groups and cations. Both Na+ and K+ are mainly attracted around head groups by direct ion binding while Mg2+ is centrally trapped among adjacent charged head groups. In addition, a surprising shift of the backbone hydrogen bond, from intact state to intermediate state, is observed. This is opposite to the stabilising effect of Na+ around negatively charged head groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.