Abstract

The global demand for energy and the concerns over climate issues renders the development of alternative renewable energy sources such as hydrogen (H2 ) important. A high-spin (hs) FeII complex with o-phenylenediamine (opda) ligands, [FeII (opda)3 ]2+ (hs-[6R]2+ ), was reported showing photochemical H2 evolution. In addition, a low-spin (ls) [FeII (bqdi)3 ]2+ (bqdi: o-benzoquinodiimine) (ls-[0R]2+ ) formation by O2 oxidation of hs-[6R]2+ , accompanied by ligand-based six-proton and six-electron transfer, revealed the potential of the complex with redox-active ligands as a novel multiple-proton and -electron storage material, albeit that the mechanism has not yet been understood. This paper reports that the oxidized ls-[0R][PF6 ]2 can be reduced by hydrazine giving ls-[FeII (opda)(bqdi)2 ][PF6 ]2 (ls-[2R][PF6 ]2 ) and ls-[FeII (opda)2 (bqdi)][PF6 ]2 (ls-[4R][PF6 ]2 ) with localized ligand-based proton-coupled mixed-valence (LPMV) states. The first isolation and characterization of the key intermediates with LPMV states offer unprecedented molecular insights into the design of photoresponsive molecule-based hydrogen-storage materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.