Abstract

As a potent and selective drug, brigatinib exhibits high efficacy against wild-type and mutant anaplastic lymphoma kinase (ALK) proteins to treat non-small cell lung cancer. In this work, the mechanisms of brigatinib binding to wild type and four mutant ALKs were investigated to gain insight into the dynamic energetic and structural information with respect to the design of novel inhibitors. Comparison between ALK-brigatinib and ALK-crizotinib suggests that the scaffold of brigatinib is well anchored to the residue Met1199 of hinge region by two hydrogen bonds, and the residue Lys1150 has the strong electrostatic interaction with the dimethylphosphine oxide moiety in brigatinib. These ALK mutations have significant influences on the flexibility of P-loop region and DFG sequences, but do not impair the hydrogen bonds between brigatinib and the residue Met1199 of hinge region. And mutations (L1196M, G1269A, F1174L, and R1275Q) induce diverse conformational changes of brigatinib and the obvious energy variation of residues Glu1167, Arg1209, Asp1270, and Asp1203. Together, the detailed explanation of mechanisms of those mutations with brigatinib further provide several guidelines for the development of more effective ALK inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.