Abstract
Microbial contamination is the major cause of economic losses in commercial and scientific plant tissue culture laboratories. For successful micropropagation, it is important to control contamination during in vitro cultures. The present study was designed to isolate, identify and eradicate endophytic contaminants from in vitro cultures of medicinally important plant Fagonia indica. A total of eight distinct bacterial isolates from in vitro grown plantlets of F. indica were selected based on analysis of colony morphology. The endophytic bacterial contaminants identified at the species level through 16S rRNA sequence analysis were Enterobacter xiangfangensis, Bacillus vallismortis, Bacillus tequilensis, Terribacillus halophilus, Pantoea dispersa, Serratia marcescens subsp. Sakuensis, Staphylococcus epidermidis and Bacillus atrophaeus. It was observed that almost 60% of seedlings were contaminated with Bacillus sp. and out of those, Bacillus tequelensis contributed to most infections (70% out of the Bacillus infections). The other most frequently occurring bacteria were Bacillus vallismortis, Terribacillus halophilus and Serratia marcescens subsp. sakuensis. Furthermore, the addition of antimicrobials to the media either completely inhibited or drastically decreased the growth of endophytic bacteria as compared to the control in which 92% of the plantlets were contaminated with these endophytes. Nine different antibiotics (rifampicin, teicoplanin, gentamicin, vancomycin, ciprofloxacin, tobramycin, tetracycline, doxycycline and ampicillin) were tested for their activity against the identified endophytes. Antibiotics such as ciprofloxacin and tobramycin showed a good response and inhibited the growth of all the bacterial isolates at low doses compared to the other antibiotics. Tobramycin was the most effective as it inhibited the growth of five of the bacterial isolates at a dosage as low as 4 mg/L. In case of tetracycline (16 mg/L) and doxycycline (64 mg/L), the contamination frequency in plantlets was 25.6 and 45%, respectively. It is, therefore, important to search for more endophytes, causing adverse effects during in vitro cultures and should devise a feasible anti-microbial strategy for controlling such contamination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.