Abstract

The hydrothermal vent crab Shinkaia crosnieri is considered to obtain nutrition from the epibiotic bacteria found on the setae, but previous studies have not shown how nutrients can be transferred from the epibionts to the host. In this study, microscopic observations of S. crosnieri intestinal components detected autofluorescent setae fragments and pigmentation derived from the digestion of epibionts in a dye-stained epibiont tracer experiment. An in vitro digestion experiment with epibiotic populations using an intestinal extract demonstrated the degradation of epibiotic cells by digestive enzymes. A phylogenetic analysis showed that many of the bacterial 16S ribosomal RNA gene sequences obtained from the intestine were closely related to the sequences of the epibionts, thus they were probably derived from the epibionts. A stable isotope tracer experiment also indicated that (13)C assimilated by the epibionts provided a carbon (nutrition) source for the host. Both activity measurements and isotope studies showed that chemosynthetic metabolism by the gut microbial components were inactive. Together with the feeding behaviour of living S. crosnieri, these results indicate that S. crosnieri ingests the epibionts using maxillipeds and assimilates them via its digestive organs as a nutrient source. The results of this study elucidate the mechanism of nutritional transfer in ectosymbiosis between chemosynthetic bacteria and deep-sea invertebrates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.