Abstract

The theoretical aspects of the \ensuremath{\beta}-decay process in ${\mathrm{T}}_{2}$ as they relate to neutrino-mass experiments are discussed. We present new results from stabilization method calculations for the resonance states of the daughter ${\mathrm{HeT}}^{+}$ ion. The probabilities for this system to be found in various final shake-off states after the ${\mathrm{T}}_{2}$ decay have been calculated. The \ensuremath{\beta}-decay energy spectra are generated using probability distributions of various accuracies. It is shown that, if the actual neutrino mass were 30 eV, one would obtain masses of 6 and 25 eV using spectra of the bare tritium nucleus and the tritium atom, respectively, for analyzing the data. If the nuclear motion effects were neglected, the obtained mass would be 30 eV but the end-point energy would be shifted by 1.5 eV. For a 30-eV mass the accuracy of our calculations is much better than necessary: Substituting our data by those obtained with a very poor basis set changed the neutrino mass only by about 1 eV. For a 1-eV mass, however, the less accurate calculation would introduce a substantial error. In particular, including the effects of nuclear motion is important to correctly determine a 1-eV mass. The accuracy with which resonance states of the daughter ion are determined has practically no influence on the final result. We argue that most solid-state effects will lead to corrections small compared to the expected experimental errors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.