Abstract

By using molecular dynamics in canonical ensemble (constant atom number, volume and temperature (NVT)) the adsorption of Sebacic Acid (SA) and 1,10-Decanediol (DD) respectively onto the surfaces of an iron-oxide nanoparticle is simulated. The nanoparticle is built by taking into account the inverse spinel structure of a stoichiometric magnetite and the valence of the iron ions (FeA2+FeB2+FeB2+ where A and B stand for tetrahedral and octahedral sites, respectively). This study serves to determine theoretically whether surfactants like SA or DD acts as a better stabilising agent for iron oxide nanoparticles of diameters ⩾2.6nm. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) measurements on iron oxide nanoparticles stabilised with SA- and DD surfactants were obtained and compared to the simulated results. Unagglomerated nanoparticles with well-defined edges were observed during TEM for DD stabilised particles and a smaller particle size could be calculated for these nanoparticles from XRD patterns. It is concluded that DD stabilises an iron-oxide nanoparticle better than SA because of the difference in the number of oxygen atoms on the respective functional groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.