Abstract
Many morphological models have been proposed to describe the water swelling behavior and proton transport mechanism of perfluorosulfonic acid (PFSA) polymer membranes through experimental and modeling studies. However, the ongoing structural debate has not been completely resolved yet. We here conducted a series of all-atom molecular dynamics simulations of hydrated PFSA membranes to evaluate changes in the membrane morphology at different water contents. We found a similar dependence of the morphology on the water content between PFSA membranes with equivalent weight (EW) of 844 and 1144 g/equiv. That is, the morphology of the aqueous domain changes with increasing water content from a channel-network structure to a tortuous layered structure, and once attaining the tortuous layered structure, the water layer just thickened gradually by further increasing water content. Furthermore, we found more heterogeneous water domains in the higher-EW PFSA membrane, demonstrating the stronger aggregation behavior o...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.