Abstract
Effects of cylindrical and spherical confinement on the kinetics of the isotropic-nematic quench is studied numerically. The nematic liquid crystal structure was modeled by a modified induced-dipole--induced-dipole interaction. Molecules were allowed to wander around points of a hexagonal lattice. Brownian molecular dynamics was used in order to access macroscopic time scales. In the bulk we distinguish between the early, domain, and late stage regime. The early regime is characterized by the exponential growth of the nematic uniaxial order parameter. In the domain regime domains are clearly visible and the average nematic domain size xi(d) obeys the dynamical scaling law xi(d)-t(gamma). The late stage evolution is dominated by dynamics of individual defects. In a confined system the qualitative change of the scaling behavior appears when xi(d) becomes comparable to a typical linear dimension R of the confinement. In the confining regime (xi(d)>or=R) the scaling coefficient gamma depends on the details of the confinement and also the final equilibrium nematic structure. The domain growth is well described with the Kibble-Zurek mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.