Abstract
AbstractReactive molecular dynamics simulations are carried out to study water formation and retention during impacts by nanometer sized micrometeoroids on lunar surface at the atomic‐scale. Results show that water molecules are generated and lost simultaneously during an impact. For a hydroxylated surface under average solar wind condition, the water molecules produced by a nanometer sized cosmic dust with an impact velocity of 8 km/s to 20 km/s ranges from about 44% to 275% of that existed before impact. However, the increase in water content at the impact site is only from 5% to 73% due to ejections caused by impact. While micrometeoroid impact may generate a substantial amount of new water molecules, the amount of water lost to space also increases significantly at higher impact velocities. Hence, the increase in local lunar water content is strongly affected by the impact velocity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.