Abstract

The existence and evolution of soliton-like structures in a dusty plasma medium are investigated in a first principles approach using molecular dynamic (MD) simulations of particles interacting via a Yukawa potential. These localized structures are found to exist in both weakly and strongly coupled regimes with their structures becoming sharper as the correlation effects between the dust particles get stronger. A surprising result, compared to fluid simulations, is the existence of rarefactive soliton-like structures in our non-dissipative system, a feature that arises from the charge conjugation symmetry property of the Yukawa fluid. Our simulation findings closely resemble many diverse experimental results reported in the past.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.