Abstract

Molecular dynamics simulations have been employed to investigate the folding behavior of a single linear polyethylene (PE) chain containing 1000 backbone carbon atoms under fast quenching based on all-atom and united-atom models. The single-chain folding characteristics were studied in detail for six different force fields by analyzing the evolution of chain conformations, folded structure characterisation, free energy and crystallisation. The results show that the all-trans chain undergoes a similar two-stage chain collapse mechanism during isothermal relaxation at T = 500 K, transitioning from local collapse to global collapse into a molten globule state under different force fields. During fast quenching at 100 K ns-1, the molten globule of all-atom model transitions into a folded, significantly anisotropic ordered structure under AMBER-AA or OPLS-AA force fields, while that of the united-atom model remains unchanged in its globular structure. The chain crystallization evolution indicates that the single chain folds into ordered lamellar structures with higher crystallinity under AMBER-AA and OPLS-AA force fields. In contrast, under the other four force fields, the single chain remains in a stable amorphous state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.