Abstract

Covalently-bound organic silicate-aluminum hybrid coagulants (CBHyC) have been shown to efficiently remove low molecular weight organic contaminants from wastewater. However, the interaction dynamics and motivations during the coagulation of contaminant molecules by CBHyC are limited. In this study, a molecular dynamics (MD) simulation showed that CBHyC forms core-shell structure with the aliphatic carbon chains gather inside as a core and the hydrophilic quaternary ammonium-Si-Al complexes disperse outside as a shell. This wrapped structure allowed the coagulant to diffuse into solutions easily and capture target contaminants. The adsorption of anionic organic contaminants (e.g., diclofenac) onto the CBHyC aggregates was driven equally by van der Waals forces and electrostatic interactions. Cationic organic contaminants (e.g., tetracycline) were seldom bound to CBHyC because of substantial repulsive forces between cationic molecules and CBHyC. Neutrally-charged organic molecules were generally bound through hydrophobic interactions. For adenine and thymine deoxynucleotide, representatives of antibiotic resistance genes, van der Waals forces and electrostatic interaction became the dominant driving force with further movement for adenine and thymine, respectively. Driving forces between target contaminant and coagulant directly affect the size and stability of formed aggregate, following the coagulation efficiency of wastewater treatment. The findings of this study enrich the database of aggregation behavior between low molecular weight contaminants and CBHyC and contribute to further and efficient application of CBHyC in wastewater treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.