Abstract

Low-salinity water flooding of formation water in rock cores is, potentially, a promising technique for enhanced oil recovery (EOR), but details of the underlying mechanisms remain unclear. The salinity effect on the interface between water and oil was investigated here using the molecular dynamics (MD) simulation method. n-Decane was selected as a representative oil component, and SPC/E water and all-atom optimized potentials for liquid simulations (OPLS-AA) force fields were used to describe the water/oil/ionic interactions for saltwater and n-decane molecules. Equilibrium MD simulations were first conducted to study the n-decane/vapor and saltwater/vapor interface systems at six different NaCl concentrations (0, 0.05, 0.10, 0.20, 0.50, and 1.00 M). The water/oil interface was then investigated by calculating bulk density distribution, radial distribution function, interface thickness, and water/oil interfacial tension (IFT). Sufficiently long MD simulations of water/n-decane/vapor were performed, followed by an analysis of the effect of salinity on the water/oil/vapor interface. The IFT values for the water/vacuum interface, n-decane/vacuum interface, and water/n-decane interface were obtained from the pressure tensor distribution after system equilibration, with values of 71.4, 20.5, and 65.3 mN/m, respectively, which agree well with experimental and numerical results reported in the literature. An optimal salinity of ∼0.20 M was identified corresponding to a maximum interfacial thickness between water and the oil phase, which results in a minimum water/oil IFT value and a maximum value for the oil/water contact angle, a condition beneficial for EOR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.