Abstract

The edge dislocation glide velocity in fcc metals (nickel, silver) is studied at various temperatures, tangential stresses, and contents of interstitial atoms of light elements (carbon, nitrogen, oxygen) by molecular dynamics simulation. The glide velocity of partial dislocations in pure metals decreases with increasing temperature at low tangential stresses (~10 MPa) and increases at relatively high tangential stresses (~102 MPa or higher). The introduction of interstitial atoms retards dislocation glide. This effect is more pronounced in nickel than in silver, which is mainly due to the difference in the lattice parameters: the lattice parameter of nickel is smaller than that of silver.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.