Abstract

Signal recognition particle (SRP) and its receptor (SR) play essential role in the SRP-dependent protein targeting pathway. They interact with one another to precisely regulate the targeting reaction. The mechanism of this interaction consists of at least two discrete conformational states: complex formation and GTPase activation. Although structural studies have provided valuable insights into the understanding of the SRP-SR interaction, it still remains unclear that how SRP and SR GTPases use their intrinsic conformational flexibilities to exert multiple allosteric regulations on this interaction process. Here, we use computational simulations to present the dynamic behavior of the SRP GTPases at an atomic level to gain further understanding of SRP-SR interaction. We show that: (i) equilibrium conformational fluctuations contain a cooperative inter- and intradomain structural rearrangements that are functionally relevant to complex formation, (ii) a series of residues in different domains are identified to correlate with each other during conformational rearrangements, and (iii) alpha 3 and alpha 4 helices at domain interface actively rearrange their relative conformation to function as a bridge between the N domain and the core region of the G domain. These results, in addition to structural studies, would harness our understanding of the molecular mechanism for SRP and SR interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.