Abstract

We report computer simulation of the self-assembly of alkylthiols on the surface of liquid mercury. Here we focus mainly on the alkylthiol behavior on mercury as a function of the surfactant surface coverage, which we study by means of large-scale molecular dynamics simulations of the equilibrium structure at room temperature. The majority of the presented results are obtained for octa- and dodecanethiol surfactants. This topic is particularly interesting because the properties of the alkylthiol self-assembled monolayers on liquid mercury are relevant for practical applications (e.g., in organic electronics) and can be controlled by mechanically manipulating the monolayer, i.e., by changing its structure. Our computer simulation results shed additional light on the alkylthiol self-assembly on liquid mercury by revealing the coexistence of a dense agglomerated laying-down alkylthiols with a very dilute 2D vapor on mercury surface rather than a single vapor phase in the low surface coverage regime. In the regimes of the high surface coverage we observe the coexistence of the laying-down liquid phase and crystalline phases with alkylthiols standing tilted at a sharp angle to the surface normal, which agrees with the phase behavior previously seen in X-ray and tensiometry experiments. We also discuss the influence of finite-size effects, which one inevitably encounters in molecular simulations. Our findings agree well with the general predictions of the condensation/evaporation theory for finite systems. The temperature dependence of the stability of the crystalline alkylthiol phases and details of the surfactant chemical binding to the surface are discussed. The equilibrium structure of the crystalline phase is investigated in detail for the alkylthiols of various tail lengths.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.