Abstract

AbstractMolecular dynamics simulations of pure benzene and a poly(oxyethylene) chain in benzene are performed. The simulation of pure benzene is found to agree excellently with previous simulations despite using a different force field. A comparison is made between the results of simulations of the poly(oxyethylene) chain in benzene and in water and of stochastic simulations with respect to mean torsional angles, trans/gauche fractions, and transition rates. Characteristic deviations are found for the simulation in water and explained by specific atomic interactions, while there is satisfactory agreement with a stochastic simulation based upon the simple Langevin equation using a friction coefficient of 1 ps−1. The characteristic ratio of poly(oxyethylene) in benzene is calculated on the basis of the rotational isomeric state model. © 1992 by John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.