Abstract

The plugging of processing and transportation lines by gas hydrate formation is a challenging problem for safe exploitation of oil and gas. The existence of water soluble third component (like methanol and sodium chloride) in the aqueous phase influence the gas hydrate formation thermodynamically also possibly affects the kinetics of hydrate growth. Inorganic salt and organic molecule (alcohols) at high concentration in the aqueous phase have been used as thermodynamic inhibitors to effectively prevent the hydrate formation. This study utilizes molecular dynamics as well as an experimental method to investigate the mechanism of the hydrate formation and the effect of additives. The MD simulation showed that at moderate temperature and pressure, a low concentration (1wt %) of methanol and NaCl enhances methane hydrate growth kinetics. Significant numbers of methanol molecules were observed inside the gas hydrate cages whereas Na+/Cl− ions leach out during hydrate formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.