Abstract
The applicability of deep eutectic solvents is determined by their physicochemical properties. In turn, the properties of eutectic mixtures are the result of the components' molar ratio and chemical composition. Owing to the relatively low viscosities displayed by alcohol-based deep eutectic solvents (DESs), their application in industry is more appealing. Modeling the composition-property relationships established in polyalcohol-based mixtures is crucial for both understanding and predicting their behavior. In this work, a physicochemical property-structure comparison study is made between four choline chloride polyalcohol-based DESs, namely, ethaline, propeline, propaneline, and glyceline. Physicochemical properties obtained from molecular dynamic simulations are compared to experimental data, whenever possible. The simulations cover the temperature range from 298.15 to 348.15K. The simulated and literature experimental data are generally in good agreement for all the studied DESs. Structural properties, such as radial and spatial distribution functions, coordination numbers, hydrogen bond donor (HBD)-HBD aggregate formation, and hydrogen bonding are analyzed in detail. The higher prevalence of HBD:HBD and HBD:anion hydrogen bonds is likely to be the major reason for the relatively high density and viscosity of glyceline as well as for lower DES self-diffusions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.