Abstract

AbstractD‐π‐A type 4‐((9‐phenylcarbazol‐3‐yl)ethynyl)‐N‐dodecyl‐1,8‐naphthalimide (CZNI) with a large dipole moment of 8.49 D and A‐π‐A type bis[(4,4′‐1,8‐naphthalimide)‐N‐dodecyl]ethyne (NINI) with a negligible dipole moment of 0.28 D, were smartly designed and synthesized to demonstrate the evidence of a molecular dipole as the dominant mechanism for controlling charge separation of organic semiconductors. In aqueous solution, these two novel naphthalimides can self‐assemble to form nanoribbons (NRs) that present significantly different traces of exciton dissociation dynamics. Upon photoexcitation of NINI‐NRs, no charge‐separated excitons (CSEs) are formed due to the large exciton binding energy, accordingly there is no hydrogen evolution. On the contrary, in the photoexcited CZNI‐NRs, the initial bound Frenkel excitons are dissociated to long‐lived CSEs after undergoing ultrafast charge transfer within ca. 1.25 ps and charge separation within less than 5.0 ps. Finally, these free electrons were injected into Pt co‐catalysts for reducing protons to H2 at a rate of ca. 417 μmol h−1 g−1, correspondingly an apparent quantum efficiency of ca. 1.3 % can be achieved at 400 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.