Abstract

SummaryCell adhesion by classical cadherins is mediated by dimerization of their EC1 domains through the “swapping” of N-terminal β-strands. We use molecular simulations, measurements of binding affinities, and x-ray crystallography to provide a detailed picture of the structural and energetic factors that control the adhesive dimerization of cadherins. We show that strand swapping in EC1 is driven by conformational strain in cadherin monomers which arises from the anchoring of their short N-terminal strand at one end by the conserved Trp2 and at the other by ligation to Ca2+ ions. We also demonstrate that a conserved pro-pro motif functions to avoid the formation of an overly tight interface where affinity differences between different cadherins, crucial at the cellular level, are lost. We use these findings to design site-directed mutations which transform a monomeric EC2-EC3 domain cadherin construct, into a strand-swapped dimer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.