Abstract
Protein-based soft ionic conductors have attracted considerable research interest in recent years with great potential in applications at the human-machine interfaces. However, a fundamental mechanistic understanding of the ionic conductivity of silk-based ionic conductors is still unclear. Here, we first developed an environmental-friendly and scalable method to fabricate silk-based soft ionic conductors using silk proteins and calcium chloride. The mechanistic understanding of the ion transport and molecular interactions between calcium ions and silk proteins at variable water contents was investigated in-depth by combining experimental and simulation approaches. The results show that calcium ions primarily interact with amide groups in proteins at a low water content. The ionic conductivity is low since the calcium ions are confined around silk proteins within 2.0-2.6 Å. As water content increases, the calcium ions are hydrated with the formation of water shells, leading to the increased distance between calcium ions and silk proteins (3.3-6.0 Å). As a result, the motion of the calcium ions increased to achieve a higher ionic conductivity. By optimizing the ratio of the silk proteins, calcium ions, and water, silk-based soft ionic conductors with good stretchability and self-healing properties can be obtained. Such protein-based soft ionic conductors can be further used to fabricate smart devices such as electrochromic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.