Abstract

Heat shock protein 10 (HSP10) gene of humphead snapper ( Lutjanus sanguineus), designated as ByHSP10, was cloned by rapid amplification of cDNA ends (RACE) techniques with the primers designed from the known EST sequence identified from the subtracted cDNA library of the head kidney of humphead snapper. Sequence analysis showed the full length cDNA of ByHSP10 was 529 bp, containing a 5′ terminal untranslated region (UTR) of 51 bp, a 3′ terminal UTR of 181 bp, and an open reading frame (ORF) of 297 bp encoding a polypeptide of 99 amino acids. Based on the deduced amino acid sequence, the theoretical molecular mass of ByHSP10 was calculated to be 10.92 kDa with an isoelectric point of 9.46. Moreover, chaperonins hsp10/cpn10 signature was found in the amino acids sequence of ByHSP10 by PredictProtein. BLAST analysis revealed that the amino acids of ByHSP10 had the highest homology of 88% compared with other HSP10s. Fluorescent real-time quantitative RT-PCR was used to examine the expression of ByHSP10 gene in eight kinds of tissues of humphead snapper after the challenge with Vibrio harveyi. There was a clear time-dependent expression pattern of ByHSP10 in head kidney, spleen and thymus after bacteria challenge. The expression of mRNA reached the maximum level at the time point of 9 h, 6 h and 24 h, respectively and then returned to control level in 36 h. The up-regulated mRNA expression of ByHSP10 in humphead snapper after bacteria challenge indicated that the HSP10 gene was inducible and might be involved in immune response. A phylogenetic tree was constructed based on the ORF nucleotide sequences of HSP10 for 30 species. The relatonships among them were generally in agreement with the traditional taxonomy which suggested that HSP10 genes could aid in the system classification research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.