Abstract

Cinnamate 4-hydroxylase (C4H) catalyzes the regioselective para-hydroxylation of trans-cinnamic acid to form p-coumaric acid, the biosynthetic precursor of phenylpropanoid-based polymers. These biopolymers play an essential role in plant structure construction, development, and defense. Herein the open reading frame of CaC4H2 was cloned from Camptotheca acuminata, a deciduous camptothecin-producing tree native to China. CaC4H2 showed 94 % amino acid residues identity with those of reported CaC4H, which suggested that CaC4H2 is an isoform of C4Hs presented in C. acuminata. The intact CaC4H2 was overexpressed in Escherichia coli with its functional reaction partner cytochrome P450 reductase, CamCPR, which transfers electrons from NADPH to CaC4H2 to support the catalytic hydroxylation activity of CaC4H2. Upon incubating trans-cinnamic acid with the recombinant CaC4H2 and tCamCPR, the formation of p-coumaric acid was confirmed by the HPLC–DAD and UPLC-DAD-ESIMS analyses, which indicated the catalytic hydroxylation activity of CaC4H2. Quantitative real-time PCR analyses showed that CaC4H2 was expressed in all tissues of C. acuminata seedlings, which is consistent with the well-known conclusion that the C4H-catalyzed hydroxylation reaction is a key step within the biosynthetic pathway of phenylpropanoids. The functional characterization of CaC4H2 will be useful for molecular breeding and sustainable utilization and protection of the camptothecin-producing plant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.