Abstract

S-Adenosyl-L-methionine:scoulerine-9-O-methyltransferase (SMT) catalyzes the transfer of the S-methyl group of S-adenosyl-L-methionine to the 9-hydroxyl group of scoulerine during the biosynthesis of berberine. We have isolated functionally active cDNA clones (pCJSMTs) from a cDNA library prepared from cultured cells of Coptis japonica. The longest cDNA insert (pCJSMT1) had an open reading frame that encoded 351 amino acids, but the calculated molecular mass (38,364 Da) of the deduced product was slightly lower than the experimentally determined molecular mass of purified SMT. Rapid amplification of the 5' end of the cDNA indicated that the full-length cDNA of SMT consisted of 1,458 nucleotides that encoded 381 amino acids. When the full-length cDNA was expressed in E. coli, the molecular mass of the expressed SMT was greater than that of native SMT in Coptis cells. This result suggests that SMT might be produced in a pre-mature form and processed post-translationally. SMT was also found to exhibit sequence homology to other O-methyltransferases from plants and N-terminal region of the SMT polypeptide appeared to be necessary for enzymatic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.