Abstract
The gene (manf-x10) encoding xylanase from an environmental genomic DNA library was cloned and expressed in Escherichia coli. The manf-x10 encoded a predicted protein of 467 amino acids residues with a molecular mass of 50.3 kD. Sequence analysis of manf-x10 gene revealed that the N-terminus had high homology to the catalytic domain of other bacterial xylanase enzymes. The optimal pH and temperature for xylanase activity were 7.0 and 40°C, respectively. In the presence of 1 mM solution of Co2+, Fe2+, Mg2+ and Zn2+, the relative xylanase activity was enhanced; however, it had almost no activity in the presence of 10 mM solution of Cu2+. The apparent Km and Vmax values obtained for the hydrolysis of rye arabinoxylan were 2.8 mg/ml and 49.5 μmol/min/mg, respectively. The C-terminus of the enzyme had high homology to a domain of unknown function found in several mannanase enzymes. Biochemical characterization of the C-terminus of the enzyme revealed a previously unrecognized carbohydrate binding module.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.