Abstract

The juvenile development and fertility-2 (jdf2) locus, also called runty-jerky-sterile (rjs), was originally identified through complementation studies of radiation-induced p-locus mutations. Studies with a series of ethylnitrosourea (ENU)-induced jdf2 alleles later indicated that the pleiotropic effects of these mutations were probably caused by disruption of a single gene. Recent work has demonstrated that the jdf2 phenotype is associated with deletions and point mutations in Herc2, a gene encoding an exceptionally large guanine nucleotide exchange factor protein thought to play a role in vesicular trafficking. Here we describe the molecular characterization of a collection of radiation- and chemically induced jdf2/Herc2 alleles. Ten of the 13 radiation-induced jdf2 alleles we studied are deletions that remove specific portions of the Herc2 coding sequence; DNA rearrangements were also detected in two additional mutations. Our studies also revealed that Herc2 transcripts are rearranged, not expressed, or are present in significantly altered quantities in animals carrying most of the jdf2 mutations we analyzed, including six independent ENU-induced alleles. These data provide new molecular clues regarding the wide range of jdf2 and p phenotypes that are expressed by this collection of recently generated and classical p-region mutations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.