Abstract

Specimens of Lamellibrachia (Annelida: Siboglinidae) were recently discovered at cold seeps in the eastern Mediterranean. In this study, we have investigated the phylogeny and function of intracellular bacterial symbionts inhabiting the trophosome of specimens of Lamellibrachia sp. from the Amon mud volcano, as well as the bacterial assemblages associated with their tube. The dominant intracellular symbiont of Lamellibrachia sp. is a gammaproteobacterium closely related to other sulfide-oxidizing tubeworm symbionts. In vivo uptake experiments show that the tubeworm relies on sulfide for its metabolism, and does not utilize methane. Bacterial communities associated with the tube form biofilms and occur from the anterior to the posterior end of the tube. The diversity of 16S rRNA gene phylotypes includes representatives from the same divisions previously identified from the tube of the vent species Riftia pachyptila, and others commonly found at seeps and vents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.