Abstract
Viperin is well known as one of the interferon-stimulated genes involved in innate immunity. Recent studies showed that this gene is mainly responsible for antiviral response to a large variety of viral infections. In this study, we successfully cloned and characterized the complete coding sequence of duck viperin gene. The duck viperin gene encodes 363 amino acids (aa) and is highly similar to viperins from other species. Moreover, secondary and 3D structures were predicted, and these structures showed two main domains, one signal peptide, and one radical S-adenosyl methionine (SAM) domain. Additionally, the duck viperin expression was analyzed in vitro and in vivo, and analysis results indicated that the duck viperin can be strongly up-regulated by poly(I:C) and Newcastle disease virus in primary duck embryo fibroblast cells. Results also demonstrated that Newcastle disease virus significantly induced duck viperin expression in the spleen, kidneys, liver, brain, and blood. Our findings will contribute to future studies on the detailed functions and potential underlying mechanisms of this novel protein in innate immunity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.