Abstract

Plectasin (PS) is the first defensin to be isolated from a fungus, the saprophytic ascomycete Pseudoplectania nigrella, and active against Streptococcus pneumoniae and S. aureus, including antibiotic-resistant pathogens. To establish a bacterium-based production system, we compared the efficiency of four molecular chaperones and corresponding cleavage to the expression and purification of plectasin. The results showed that the yield of plectasin combined with thioredoxin A (TrxA) and small ubiquitin-related modifier (SUMO) was at a higher level (0.0356 and 0.0358 g L(-1), respectively) than that with intein (0.0238 g L(-1)) and glutathione-S-transferase (GST) (0.0243 g L(-1)). TrxA-plectasin, SUMO-plectasin, and 2-plectasin were cleaved at the correct site and purified, but their considerable amount was not cleaved and remained as a fusion peptide. The antimicrobial activity of plectasin cleaved from SUMO--plectasin against methicillin-resistant Staphylococcus aureus (MRSA), penicillin-resistant S. pneumoniae (PRSP), and vancomycin-resistant enterococci (VRE)--was stronger than ampicillin (Amp) for the same amount of substance (P ≤ 0.05). This is the first study to complete and compare the effect of different molecular chaperones and corresponding cleavage with the expression and purification of plectasin in the Escherichia coli expression system, which laid the foundation for future research and may develop the application and production of plectasin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.