Abstract

Molecular responses to cadmium (Cd) stress were studied in mycorrhizal and non-mycorrhizal Pisum sativum L. cv. Frisson inoculated with Glomus intraradices. Biomass decreases caused by the heavy metal were significantly less in mycorrhizal than in non-mycorrhizal plants. Real-time reverse transcriptase-polymerase chain reaction showed that genes implicated in pathways of Cd detoxification varied in response to mycorrhiza development or Cd application. Expression of a metallothionein-encoding gene increased strongly in roots of Cd-treated non-mycorrhizal plants. Genes encoding gamma-glutamylcysteine synthetase and glutathione (GSH) synthetase, responsible for the synthesis of the phytochelatin (PC) precursor GSH, were activated by Cd in mycorrhizal and non-mycorrhizal plants. Cd stress decreased accumulation of GSH/homoglutathione (hGSH) and increased thiol groups in pea roots, whether mycorrhizal or not, suggesting synthesis of PCs and/or homophytochelatins. An hGSH synthetase gene, involved in hGSH synthesis, did not respond to Cd alone but was activated by mycorrhizal development in the presence of Cd. Transcript levels of a glutathione reductase gene were only increased in non-mycorrhizal roots treated with Cd. Studies of three stress-related genes showed that a heat-shock protein gene was activated in mycorrhizal roots or by Cd and chitinase gene transcripts increased under Cd stress to a greater extent in mycorrhizal roots, whilst a chalcone isomerase gene was only up-regulated by Cd. Results indicate that although heavy metal chelation pathways contribute to Cd stress responses in pea, they may not make a major contribution to Cd tolerance strategies operating in the arbuscular mycorrhizal symbiosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.